本文共 716 字,大约阅读时间需要 2 分钟。
正如前文所述,现在的情感分析工作已经能够完成一些简单的任务,在上述任务上都表现出机器具有识别人类情感的能力,但也面临许多挑战。
● 在情感研究对象上,随着应用领域的不断扩展,情感对象从之前的对产品、服务等的褒贬倾向性评论到对社交媒体中的用户、话题情绪分类,表现形式更加多样,情感种类更加繁多,研究的内容也会发生相应转变,包括更加关注用户的信息以及针对社交媒体中事件用户情感的变迁。
● 在情感表达形式上,人们对于情感的表达也多样化的,有直截了当的,也有含蓄不露的,更有通过修辞手段及反讽的多种形式表达情感,因此需要更深层次的机器学习技术以及情感常识库的支持,如何构建常识知识库是亟待解决的问题。
● 在情感分析学习算法上,深度学习的崛起,无疑也为情感分析中的许多任务提供了良好的工具,并在一些任务上初现端倪,随着情感分析研究不断扩展和深入会发挥更多的作用。
● 从认知科学角度,情感分析是人工智能的一部分,虽然尚不能完全了解人类情感产生的机理,但是可以和认知科学研究者开展合作研究,通过观察脑电波探知产生各种情感的脑波形和反射情况,为情感分析研究提供科学依据。
● 在情感分析应用上,情感分析和人工智能结合,将产生一系列的应用,在聊天机器人中识别用户情感,并给予情感抚慰。更进一步,未来情感分析应用于对文章及诗词的鉴赏,自动生成自己的观点、立场及情绪,表达机器自身的情感,从而向强人工智能迈进。
总之,情感分析研究及应用前途广大,尤其是和实体机器人结合,将多媒体技术融为一体,结合语音、图像处理技术,可以从语言、表情和行为方面理解人类情感并给出相应的情感回复,打造一个具有情感的机器人时代已经不远了!
转载地址:http://aigda.baihongyu.com/